

Terminology

Ply angle Unidirectional Spring Layup Crossply Angle of fibers to indicated direction of panel, typically length of panel, for each layer. All fibers are aligned in 1 direction. 1 ply at 90° as 2nd layer on top and bottom of panel with the rest at 0°, i.e. 0,90,0,0,0...0,0,0,90,0 Fibers alternate 0° and 90° at specified intervals, typically 1:1. Example 0,90,0,90,090,0

Mechanical Property

	Unidirectional @ 0°	Spring Layup .25" thick		Crossply 1:	Crossply 1:1 .15" thick	
	73°F(23°C)	73°F(23°C)	160°F(71°C)	73°F(23°C)	160°F(71°C)	
	176,100 PSI	116,000 PSI	108,000 PSI	92,300 PSI	84,600 PSI	
Flexural Strength, PSI [MPa]	[1,214MPa]	[800MPa]	[745MPa]	[636MPa]	[583MPa]	
	5,550,000 PSI	4,370,000 PSI	4,310,000 PSI	3,470,000 PSI	3,210,000 PSI	
Flexural Modulus, PSI [GPa]	[38.3GPa]	[30.1GPa]	[29.7GPa]	[23.9GPa]	[22.1GPa]	
ASTM D790		•	•	•	•	
	129,000 PSI	94,400 PSI	80,300 PSI	70,200 PSI	62,900 PSI	
Tensile Strength, PSI [MPa]	[889MPa]	[651MPa]	[554MPa]	[484MPa]	[434MPa]	
		6,840,000 PSI	6,740,000 PSI	4,700,000 PSI	4,390,000 PSI	
Chord Modulus from .1 to .3%, PSI[GPa]		[47.2GPa]	[46.5GPa]	[32.4GPa]	[30.3GPa]	
ASTM D3039				•		
	150,000 PSI	87,000 PSI	65,400 PSI	67,600 PSI	50,600 PSI	
Compressive Strength, PSI [MPa]	[1,034MPa]	[600MPa]	[451MPa]	[466MPa]	[349MPa]	
ASTM D3410						

Chemical Resistance

Crossply laminate immersed in fluid for 7 days at 73°F(23°C) and measured per ASTM D543 and ASTM D790

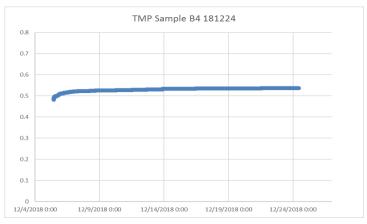
	% Change in Wt	% Change in Thickness	% Change in Flexural Mod
Heptane	0.01	0	-0.58
Isopropyl Alcohol	-0.05	0	-3.46
Ethylene Glycol	-0.03	0	-2.31
Aviation Oil (20W-50)	0.02	0	-2.02
Aviation Hydraulic fluid (5606A)	0.01	0.39	0.58
Sulfuric Acid 3%	0.04	0.39	-3.46
Sulfuric Acid 30%	0.01	0.13	-2.31
Sodium Hydroxide 1%	0.08	0	-4.61
Sodium Hydroxide 10%	0.06	0.13	-2.88
Hydrogen Peroxide 3%	0.10	0.13	-0.86
Deionized Water	0.09	0	-2.01

Electrical Properties

	60Hz	1000Hz(1KHz)	100 KHz	1MHz
Dielectric Constant, k'	5.25	5.17	4.98	4.82
Dissipation factor, D ASTM D150 @ 73°F and 50% humi	0.007 idity	0.008	0.018	0.038
Dielectric Strength V/mil (AC) ASTM D149 @ 73°F and 50% humi	428 idity			

Physical Properties

Resin Content (% by weight)	36
Specific gravity (cured average)	1.85
Barcol Hardness	67
Tg (DMA, E')	265°F (129°C)
Available thickness per ply	.005"[.127mm] special order, .010"[.254mm] standard


Fatigue Life

Spring layup parts have been tested in controlled lab environments at stresses of 22,000psi[152MPa] for at least 40,000,000 cycles of fully reversed constant loading flexural fatigue monitoring the deflection over time. From this testing and experience built up of over 20 years of field use, Flexply can be successfully used in high cycle fatigue applications using design stresses of 12,000psi [83MPa]. Low cycle fatigue applications can use design stresses of 20,000psi [138MPa]. Although the springs can survive in higher stress environments, experience has shown following these design limits extends life in the real world as many applications have short durations of higher stresses or have beyond design intent situations such as overloading or startup and shutdown of equipment. Increased temperatures due to outdoor exposure, use of product next to ovens or other heat generating equipment will cause lower stiffnesses which will also increase strain.

Another important factor in equipment design is the use of wear pads between the composite spring and equipment mounting. These wear pads can be made of thin (.030"[.75mm]) phenolic sheets or Flexply material cut to the size of the mounting bracket. The wear pads minimize the stress concentration at the edge of the mounting braket and forces the wear of the pad rather than the wear of the composite spring.

Test Name	B4		start d	ate	12/5/2018	
			start ti	me	10:47	
given			end da	ate	12/24/2018	
base-b	0.999	inch	END T	IME	10:30	
height-h	0.253	inch	# of cy	cles completed	49,246,725	
eccentric force-p	160	lbs	# OF N	/IN	27359.29167	
modulus-E	4.28E+06	psi	# OF D	DAYS TEST RAN	18.9995081	
radius-R	3	inch	# OF F	ULL DAYS RAN	18	
free length-L	4	inch				
			DYNAI	MIC DEFLECTION	0.481	
calculated				Ki=	332.6403326	lb/in
deflection-x	2.49E-01	inch		Kf=	298.5074627	lb/in
				STOPPING pk-pk =	0.536	in
v-scope reading	4.99E-01	inch	Chang	e in Deflection	11.4%	
			Dyn	namic modulus-E _D =	4.44E+06	psi
stress	2.25E+04	psi	Sp	ring Deflection-y =	0.241	inch
			D	ifference of modulus =	-3.73%	Calc vs Ac

